The influence of correlation between strength indicators of soil properties on the results of slope stability calculations
Зеркаль Олег Владимировичведущий научный сотрудник кафедры Инженерной и экологической геологии, геологический факультет МГУ им. М.В. Ломоносоваigzov@mail.ru
Самарин Евгений Николаевичпрофессор кафедры Инженерной и экологической геологии геологического факультета МГУ им. М.В. Ломоносова, д.г.-м.н., главный редактор журнала «ГеоИнфо»samarinen@mail.ru Abstract: One of the most important areas of substantiating and ensuring the safety of buildings and structures is the risk assessment of originating geological processes. For more reliable assessments when solving problems of Engineering Geology, calculating not only the deterministic component of some engineering-geological process (as it has been often done so far), but also its random component is necessary. No risk analysis or design on the basis of the reliability theory can be performed without probabilistic analysis with the use of only the stability coefficient. Therefore, further development of probabilistic approaches to the calculations is required. The presented article demonstrates the efficiency and necessity of stochastic analysis by the example of slope stability calculation.
Keywords: geological processes; landslide processes; risk assessment; slope stability; stability factor; reliable assessment; probabilistic approach; stochastic analysis; reliability index
DOI: https://doi.org/10.58339/2949-0677-2025-7-2-64-69
UDC: 624.131.7
For citation: Fomenko I.K., Zerkal' O.V., Samarin E.N. Vliyanie korrelyatsii mezhdu prochnostnymi pokazatelyami svoistv gruntov na rezul'taty rascheta ustoichivosti sklona [The influence of correlation between strength indicators of soil properties on the results of slope stability calculations] // Geoinfo. 2025. T. 7. № 2. S. 64–69. DOI:10.58339/2949-0677-2025-7-2-64-69 (in Rus.)
Funding: No information
REFERENCES:
1.GOST R 51897-2021. Menedzhment riska. Terminy i opredeleniya [Risk management. Terms and definitions]. M., RST, 2021 (in Rus.).
2.United States Army Corps of Engineers. Engineering and Design: Introduction to Probability and Reliability Methods for Use in Geotechnical Engineering. Engineer Technical Letter 1110-2-547. Washington, DC, USA: Department of the Army, 1997.
3.Bondarik G.K. Obshchaya teoriya inzhenernoi (fizicheskoi) geologii [General theory of engineering (physical) geology]. M.: Nedra, 1981. 256 s. (in Rus.).
4.Kurguzov K.V., Fomenko I.K., Sirotkina O.N. Veroyatnostno-statisticheskie podkhody pri otsenke neopredelennosti litotekhnicheskikh sistem [Probabilistic-statistical approaches in estimating uncertainty of lithotechnical systems] // Geoehkologiya. Inzhenernaya geologiya. Gidrogeologiya. Geokriologiya. 2020. № 2. S. 80–89 (in Rus.).
5.Zerkal' O.V., Fomenko I.K. Vliyanie razlichnykh faktorov na rezul'taty veroyatnostnogo analiza aktivizatsii opolznevykh protsessov [The influence of various factors on the probabilistic analysis results of activizing landslide processes] // Inzhenernaya geologiya. 2016. № 1. S. 16–21 (in Rus.).
6.Zerkal' O.V., Fomenko I.K. Otsenka geologicheskogo riska s ispol'zovaniem veroyatnostnogo analiza pri kolichestvennoi otsenke ustoichivosti sklona [Assessing geological risk using probabilistic analysis in the quantitative estimation of slope stability] // Materialy 10-i Mezhdunarodnoi nauchno-prakticheskoi konferentsii po problemam snizheniya prirodnykh opasnostei i riskov «Analiz, prognoz i upravlenie prirodnymi riskami s uchetom global'nogo izmeneniya klimatA» (GEORISK-2018). M.: RUDN, 2018. T. 1. S. 303–308 (in Rus.).
7.Kan K., Zerkal' O.V. Primenenie veroyatnostnogo analiza pri kolichestvennoi otsenke ustoichivosti sklona [Application of probabilistic analysis in the quantitative assessment of slope stability] // Inzhenernaya geologiya. 2017. № 4. S. 18–26 (in Rus.).
8.Kan K., Fomenko I.K., Van Ts., Nikol'skaya O.V. Veroyatnostnaya otsenka ustoichivosti otkosa v skal'nykh gruntakh na osnove obobshchennogo kriteriya prochnosti Khoeka – Brauna [Probabilistic assessment of the stability of a rock slope on the basis of the generalized Hoek-Brown strength criterion] // Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2020. № 5. S. 60–68 (in Rus.).
9.Fomenko I.K., Kurguzov K.V., Gorobtsov D.N., Novgorodova M.A., Sirotkina O.N. Skhematizatsiya svoistv gruntov pri matematicheskom modelirovanii v inzhenernoi geologii i geotekhnike [Schematization of soil properties in mathematical modeling in Engineering Geology and Geotechnics] // Geoinfo: ehlektronnyi zhurnal. 2021. № 3 (in Rus.).
10.Janbu N. Application of composite slip surfaces for stability analysis // Proceedings of the European Conference on Stability of Earth Slopes, Stockholm, 1954. Vol. 3. P. 43–49.
11.Krahn J. Stability modeling with SLOPE/W: an Engineering Methodology. Calgary: GEO-SLOPE International Ltd., 2004.
12.UNISDR Terminology on Disaster Risk Reduction // International Strategy for Disaster Reduction (UNISDR). Geneva: United Nations Office for Disaster Risk Reduction (UNDRR), 2009.
13.Terzaghi K., Peck R. Mekhanika gruntov v inzhenernoi praktike [Soil mechanics in engineering practice] / pod red. M.N. Gol'dshteina, per. s angl. A.V. Sulima-Samuilo. M.: Gosstroiizdat, 1958 (transl. from Eng. into Rus.).
14.Kropotkin M.P., Fomenko I.K. Inzhenerno-geologicheskie izyskaniya v Rossii segodnya: problemy normativnoi tekhnicheskoi dokumentatsii, ehkspertizy i kontrolya kachestva [Engineering-geological surveys (site investigations) in Russia today: problems of the regulatory technical documentation, expertise and quality control] // Inzhenernye izyskaniya. 2022. T. 15, № 5/6. S. 8–23.
Article in RSCI: https://elibrary.ru/item.asp?id=82945898


