Применение видеокаротажа для исследования карстовых процессов: современное состояние и перспективы развития
Латыпов Айрат ИсламгалиевичРуководитель Лаборатории по исследованию грунтов в строительстве, доцент по специальности «Инженерная геология, мерзлотоведение и грунтоведение» Казанского федерального университетаairatlat@mail.ru
Гараева Анастасия НиколаевнаДоцент ФГАОУ ВО «Казанский (Приволжский) федеральный университет, к.г.-м.н.
В статье представлен обзор современных методов применения видеокаротажа (телевизионного каротажа) для изучения карстовых образований и оценки карстовой опасности территорий. Рассматриваются технические аспекты метода, его преимущества и ограничения при исследовании карстовых полостей, а также представлен опыт компании «КазГеоЛаб» в области применения метода при оценке карстоопасности объектов в центральной части города Казани.
Карстовые процессы представляют серьезную угрозу для строительства и эксплуатации инженерных сооружений, требуя детального изучения структуры и распространения карстовых образований. Традиционные методы исследования карста, основанные на бурении и геофизических измерениях, не всегда обеспечивают достаточную детальность изучения внутренней структуры карстовых полостей. В этой связи особое значение приобретает применение видеокаротажа как высокоинформативного метода прямого визуального исследования стенок скважин.
Теоретические основы и методология
Видеокаротаж заключается в спуске в скважину миниатюрной видеокамеры с системой освещения, которая передает изображение на поверхность в режиме реального времени. Полученное видео записывается и анализируется специалистами.
Видеокаротаж позволяет решать следующие задачи:
- Определение типов пород и их границ
- Выявление включений и прослоек
- Оценка степени выветривания пород
- Обнаружение трещин, разломов, зон дробления
- Определение ориентировки трещин
- Выявление карстовых полостей
- Определение уровня грунтовых вод
- Выявление водопритоков
- Наблюдение за фильтрацией
В настоящее время метод видеокаротажа активно применяется в Российской Федерации и за рубежом. В.В. Толмачев и В.П. Хоменко отмечают, что данный метод позволяет получать детальную визуальную информацию о структуре горных пород, трещиноватости и наличии карстовых полостей с высокой степенью разрешения [1]. В.П. Костарев и А.А. Никулин подчеркивают, что видеокаротаж обеспечивает непосредственное наблюдение геологических особенностей, что особенно важно при работе на карстоопасных территориях, где точность определения местоположения и размеров полостей критически важна для оценки инженерно-геологических условий [2].
Современные системы видеокаротажа, как отмечают J.H. Williams и С.D. Johnson, включают оптические телевизионные зонды высокого разрешения, способные работать в различных условиях освещенности и обеспечивать детализацию объектов размером до нескольких миллиметров [6]. H. Zhou и A.P. Butler указывают на возможность получения как статических изображений, так и видеозаписи в реальном времени, что существенно расширяет аналитические возможности метода [5].
Применение видеокаротажа при оценке карстовой опасности
Согласно СП 446.1325800.2019, видеокаротаж рекомендуется использовать в качестве обязательного метода при инженерных изысканиях на закарстованных территориях для категорий карстовой опасности II и выше [11].
Основным преимуществом видеокаротажа при изучении карста является возможность прямого визуального обнаружения и детального изучения карстовых полостей. Л.А. Абукова и В.Т. Трофимов отмечают, что метод позволяет не только обнаруживать полости, но и определять их морфологические характеристики: форму, размеры, направление развития, степень заполнения продуктами выщелачивания [3].
А.Б. Климчук и В.Н. Андрейчук подчеркивают, что видеокаротаж обеспечивает возможность изучения внутренней структуры карстовых каналов, что критически важно для понимания гидрогеологических процессов в карстовых массивах [8].
При инженерно-геологических изысканиях видеокаротаж позволяет получать количественные параметры карстовых образований, необходимые для оценки несущей способности оснований сооружений. В.А. Королев и В.Н. Соколов отмечают, что визуальная информация о степени развития карстовых процессов служит основой для разработки инженерных мероприятий по защите от карстово-суффозионных деформаций [4].
Наибольшая эффективность достигается при комплексном применении видеокаротажа с другими геофизическими методами.
Так, F.L. Paillet демонстрирует, что сочетание оптического и акустического каротажа существенно повышает достоверность результатов при изучении трещиноватых и закарстованных пород [7].
Методические рекомендации ВСЕГИНГЕО предписывают использование видеокаротажа в комплексе с электрометрией, кавернометрией и расходометрией для получения полной характеристики карстовых образований [10]. Видеокаротаж является важным дополнением к традиционным методам исследования скважин и позволяет получить уникальную визуальную информацию о геологическом строении участка.
D. Ford и P. Williams отмечают особую важность видеокаротажа при изучении карстовых водоносных горизонтов, где визуальное наблюдение позволяет определять точки водопритоков и направления движения подземных вод [9]. Это критически важно для понимания гидродинамики карстовых систем и прогнозирования их эволюции.
Преимущества и ограничения метода
Телевизионное каротажное исследование скважин характеризуется рядом значительных преимуществ, обусловленных природой визуального метода изучения геологических объектов. Высокая детальность метода обеспечивается возможностью визуального анализа структурных особенностей горных пород с разрешающей способностью до миллиметровых значений, что позволяет детально изучать текстурные и структурные характеристики геологических образований. Метод обеспечивает получение прямой визуальной информации о геологическом строении исследуемого объекта без промежуточных интерпретационных процедур, что существенно повышает достоверность получаемых данных и исключает возможные искажения, характерные для косвенных методов исследования.
Важным преимуществом является возможность создания цифрового архива высококачественных изображений, обеспечивающего долгосрочное хранение визуальной информации и возможность многократного анализа полученных данных различными специалистами в разное время. Универсальность применения метода проявляется в его эффективности при исследовании различных типов геологических разрезов и условий залегания горных пород, что делает его применимым в широком спектре геологических задач.
Однако телевизионный каротаж имеет определенные ограничения, связанные с физическими и техническими аспектами проведения исследований. Качество получаемых изображений существенно зависит от оптической прозрачности жидкости, заполняющей скважину, при этом повышенная мутность среды приводит к значительному ухудшению визуализации и снижению информативности метода. Геометрические ограничения метода связаны с минимально допустимым диаметром исследуемых скважин, что определяется размерами телевизионной аппаратуры и требованиями к качеству получаемых изображений.
Техническая сложность реализации метода обусловлена необходимостью использования высокотехнологичного специализированного оборудования и привлечения высококвалифицированных специалистов для проведения исследований и интерпретации результатов.
Современные тенденции развития метода
Современные тенденции развития видеокаротажа в области карстоведения характеризуются комплексным подходом к технологическому совершенствованию метода и расширению его аналитических возможностей. Одним из ключевых направлений развития является существенное повышение разрешающей способности оптических систем, что достигается за счет внедрения высокотехнологичных сенсорных элементов и совершенствования оптических схем видеокаротажного оборудования. Улучшение качества визуализации позволяет детализировать морфологические особенности карстовых образований и повышает точность их геометрической характеристики.
Значительное внимание уделяется разработке специализированных программных комплексов, ориентированных на автоматизированную обработку и анализ получаемых визуальных данных. Создание алгоритмов автоматического распознавания характерных признаков карстовых образований существенно ускоряет процесс интерпретации результатов исследований и снижает влияние субъективного фактора при анализе изображений. Программное обеспечение включает модули для коррекции искажений, улучшения контрастности изображений и автоматической сегментации визуальных данных.
Перспективным направлением является интеграция технологий видеокаротажа с современными системами трехмерного геологического моделирования карстовых систем. Такая интеграция обеспечивает возможность создания детальных пространственных моделей карстовых полостей и каналов на основе визуальных данных, полученных при каротажных исследованиях. Трехмерное моделирование позволяет визуализировать сложную геометрию карстовых образований и анализировать их пространственные взаимосвязи в масштабе всей исследуемой территории.
Важным аспектом современного развития метода является формирование обширных баз данных высококачественных изображений карстовых образований различных типов и масштабов. Создание таких архивов визуальной информации служит основой для внедрения технологий машинного обучения в практику интерпретации результатов видеокаротажа. Алгоритмы машинного обучения, обученные на представительных выборках изображений, способны автоматически классифицировать карстовые образования по их морфологическим характеристикам и геологическим особенностям, что значительно повышает эффективность и объективность анализа получаемых данных.
Опыт использования видеокаротажа при оценке карстовой опасности центральной части г. Казани
Научно-производственная компания «КазГеоЛаб» активно применяет метод видеокаротажа при проведении инженерно-геологических изысканий, в частности, при оценке карстовой опасности. В этом отношении наибольший интерес представляет максимально сложная в инженерно-геологическом отношении историческая часть города Казани, на которой расположено множество объектов культурного наследия.
На многих улицах в различное время наблюдались проявления карстово-суффозионных процессов. В частности, на рисунке 1 показана схема расположения воронок вдоль улицы Дзержинского.
Территория исторической части города представляет собой невысокую холмистую эрозионно-денудационную равнину, расчлененную долинами р. Волги и Казанки, расположенную в зоне сочленения денудационной Предкамской возвышенности и Заволжской низменности.
В геоморфологическом отношении участок работ находится в пределах второй надпойменной одинцовско-московской террасы р. Волга. Естественный рельеф изменен в ходе строительного освоения территории и представляет собой террасированный склон, сформированный в XVIII веке. Рельеф эрозионно-тектонической поверхности фундамента отражает современную структуру и является результатом взаимодействия тектонических и эрозионно-денудационных процессов. В центральной исторической части города рельеф коренных пород формировался преимущественно под воздействием процесса размыва и эрозии древней долины, что обусловливает ориентацию долин и останцев (хребтов, холмов) древнего рельефа, которые располагаются поперек современных валов.
Подземный рельеф коренных пород представлен двумя глубинными котловинами (прогибами со стороны Черного озера и Верхним Кабаном), разделённым хребтиком, который начинается от Кремля вдоль улицы Кремлёвская и носит современное название «Казанский хребтик». Его протяжённость в современном рельефе составляет ˷ 2 км, ширина ˷ 500 м.
В неотектоническом отношении исследуемая территория относится к Казанскому мезоблоку, входящему в состав Кильмезского макроблока, расположена на Казанском куполе с восточной стороны и представляет флексурно-разрывную зону, с амплитудой поднятия 70 метров. Восточное крыло опускается под углом 0,045–0,048, а западное — под углом 0,008–0,01.
Эрозионный останец сложен пермскими отложениями, перекрытых маломощным чехлом четвертичных пород.
В разрезе пермских пород повсеместно вскрываются доломиты седиментационно-диагенетические, плотные, светло-серые и желтовато-серые, плитчатые, с пелитоморфной структурой и неясно выраженной горизонтально-слоистой текстурой за счет неравномерно-послойного распределения глинистого материала. Участками в разрезе отмечается повышенное содержание гипсовых агрегатов, либо каверн размером до 2,0 см. На всем протяжение доломиты претерпели гипергенные изменения, выразившиеся в разрушение исходной структуры пород и их дезинтеграции на отдельные плитчатые отдельности. По характеру преобразования доломиты верхнеказанского в большинстве интервалов дезинтегрированы на щебнисто-дресвяные обособления, сцементированные доломитовой или доломитово-глинистой мукой. Обломки доломитов характеризуются плотным сложением, светло-серой окраской, пелитоморфной структурой, с горизонтально-слоистой текстурой. По интенсивности гипергенного преобразования породы можно отнести к элювиальным отложениям.
На региональном уровне подобная обстановка способствует активному развитию карстовых и карстово-суффозионных процессов.
Использование видеокаротажа позволило установить, что доломитовая толща верхнеказанского подъяруса разбита многочисленными вертикальными и наклонными трещинами протяженностью до 1,5 м и раскрытостью до 1,0 см. Участками в доломитах появляются крупные щелевидные полости каверн выщелачивания, глубоко уходящие в глубь грунтового массива. Высота щелевидных подземных полостей достигает 0,5-1,0 м. Наиболее крупные из них являются причиной провалов бурового инструмента.
Видеокаротаж осуществлялся с использованием оснащенного специальной водонепроницаемой камерой высокого разрешения (диаметр 25 мм, ТВЛ 1200, угол обзора 145°) со светодиодной подсветкой (рис. 2). Опускание видеокамеры в скважину производилось аккуратно и равномерно до достижения заданного интервала для исследования. При продвижении камеры фиксировались пройденные интервалы пород, что включало определение глубины по измерительным приборам и описание структуры пород. В режиме реального времени изображение передавалось на монитор и одновременно записывалось на носитель для последующего анализа. Таким образом обеспечивалось получение подробной и достоверной информации о состоянии стенок скважины и характеристиках пород в процессе исследования.
На рисунке 3 показаны примеры фотографий ствола скважины в карстующихся доломитах.
Заключение
Видеокаротаж представляет собой высокоэффективный метод исследования карстовых образований, обеспечивающий получение детальной визуальной информации о структуре и морфологии карстовых полостей. Комплексное применение метода с другими геофизическими исследованиями значительно повышает достоверность оценки карстовой опасности территорий.
Перспективы развития метода связаны с совершенствованием технических средств, разработкой автоматизированных систем обработки данных и интеграцией с цифровыми технологиями трехмерного моделирования геологических объектов.
Внедрение видеокаротажа в практику инженерно-геологических изысканий на карстоопасных территориях способствует повышению безопасности строительства и эксплуатации инженерных сооружений.
Список литературы
1. Толмачев В.В., Хоменко В.П. Применение телевизионного каротажа для изучения карстовых полостей // Разведка и охрана недр. 2018.
2. Костарев В.П., Никулин А.А. Видеокаротаж скважин при инженерно-геологических изысканиях на карстоопасных территориях // Инженерные изыскания. 2019. №3.
3. Абукова Л.А., Трофимов В.Т. Комплексная оценка карстовой опасности с использованием геофизических методов // Геоэкология. 2020. №2.
4. Королев В.А., Соколов В.Н. Методы изучения карста при инженерно-геологических изысканиях. М.: КДУ, 2017.
5. Zhou H., Butler A.P. Optical televiewer logging for characterization of karst aquifers // Journal of Hydrology. 2018.
6. Williams J.H., Johnson C.D. Acoustic and optical borehole-wall imaging for fractured-rock aquifer studies // Ground Water. 2019.
7. Paillet F.L. Application of borehole geophysics in the characterization of flow in fractured rocks // USGS Water-Resources Investigations Report. 2020.
8. Климчук А.Б., Андрейчук В.Н. Карст Украины: современные методы изучения. Киев: Наукова думка, 2019.
9. Ford D., Williams P. Karst Hydrogeology and Geomorphology. John Wiley & Sons, 2018.
10. Методические рекомендации по применению геофизических методов при изучении карста ВСЕГИНГЕО, М., 2019.
11. СП 446.1325800.2019 Инженерно-геологические изыскания для строительства на закарстованных территориях.
Журнал остается бесплатным и продолжает развиваться.
Нам очень нужна поддержка читателей.
Поддержите нас один раз за год
Поддерживайте нас каждый месяц




