Engineering geological 3D modeling and geotechnical characterization in the framework of technical rules for geotechnical design: the case study of the Nola’s logistic plant (Southern Italy)
ПЕТРОНЕ П.Факультет наук о Земле, окружающей среде и ресурсах Неаполитанского университета имени Фридриха II, г. Неаполь, Италия
АЛЛОККА В.Факультет наук о Земле, окружающей среде и ресурсах Неаполитанского университета имени Фридриха II, г. Неаполь, Италия
ФУСКО Ф.Факультет гражданского строительства и инженерной защиты окружающей среды Миланского политехнического университета, г. Милан, Италия
ИНКОНТРИ П.Факультет наук о Земле, окружающей среде и ресурсах Неаполитанского университета имени Фридриха II, г. Неаполь, Италия
ДЕ ВИТА П.Факультет наук о Земле, окружающей среде и ресурсах Неаполитанского университета имени Фридриха II, г. Неаполь, Италияpadevita@unina.itAbstract: We present an adapted translation of the paper “Engineering geological 3D modeling and geotechnical characterization in the framework of technical rules for geotechnical design: the case study of the Nola’s logistic plant (Southern Italy)” by Italian specialists (Petrone et al., 2023). It was published in 2023 in the peer-reviewed journal “Bulletin of Engineering Geology and the Environment” by the Springer Science+Business Media publishing company. It is an open access article under the CC BY 4.0 license that allows it to be distributed, translated, adapted, and supplemented, provided that the types of changes are noted, the original source and the license are referred to. In our case, the full reference to the original paper (Petrone et al., 2023) used for the presented translation and to the open access license are given in the end.
In the design and construction of buildings and infrastructures, the reconstruction of a reliable 3D engineering geological model is an essential step to optimize costs of the construction and limit risks from failure or damage due to unforeseen ground conditions. The modeling of ground conditions is a challenging issue to be tackled especially in the case of geological units with complex geometries and spatially variable geotechnical properties. In such a direction, coupled geological and geotechnical criteria are usually adopted to define engineering geological units.
These concepts are considered by the current technical rules for geotechnical design such as the Eurocode 7 and by the national regulations which have followed it, known in Italy as “Norme Tecniche per le Costruzioni (NTC)”. Notwithstanding this advanced regulatory framework, no comprehensive indications on methodological approaches were given for the 3D engineering geological modeling and geotechnical characterization of a design and construction site.
In this paper, the case study of the highly heterogeneous and heteropic pyroclastic-alluvial stratigraphic setting of the Nola plain (Campania, Southern Italy) characterizing the site of the Nola’s logistic plant is dealt with. The approaches are based on the engineering geological modeling analysis of a high number of stratigraphic, laboratory and in situ geotechnical data, collected for the design of the plant, and the use of a specialized modeling software providing advanced capabilities in spatial modeling of geological and geotechnical information, as well as in their visual representation.
The results obtained, including also the analysis of statistical variability of geotechnical properties and the identification of representative geotechnical values, can be potentially considered a methodological approach, consistent with the current technical rules for geotechnical design as well as with fundamental concepts of engineering geological modeling and mapping.
The translation of the paper was carried out with the support of the “PETROMODELING” Group of Companies and Aleksey Bershov.
Keywords: 3D modeling; complex ground conditions; geotechnical design; construction; civil engineering works; engineering geological unit; engineering geological type; 3D engineering geological model
DOI: https://doi.org/10.58339/2949-0677-2025-7-2-100-118
UDC: 004.94; 624.131
For citation: Petrone P., Allocca V., Fusco F., Incontri P., De Vita P. Trekhmernoe inzhenerno-geologicheskoe modelirovanie i geotekhnicheskaya kharakteristika v ramkakh pravil geotekhnicheskogo proektirovaniya na primere ploshchadki stroitel'stva logisticheskogo kompleksa v doline Nola (Yuzhnaya Italiya) [Engineering geological 3D modeling and geotechnical characterization in the framework of technical rules for geotechnical design: the case study of the Nola’s logistic plant (Southern Italy)] // Geoinfo. 2024. T. 7. № 2. S. 100–118. DOI:10.58339/2949-0677-2024-7-2-100-118 (in Rus.)
Funding: The open access funding for this article was provided by the University of Naples Federico II (UNINA – Universitа degli Studi di Napoli Federico II) under the agreement between the publisher and the subcommittee of the Conference of Italian University Rectors responsible for such agreements (CRUI-CARE). The research was funded under the 2017 PRIN (Progetti di Rilevante Interesse Nazionale – “Projects of Significant National Interest”) programme through the project entitled “URGENT – URban Geology and geohazards: Engineering geology for safer, resilieNt and smart ciTies.”
REFERENCES:
- UNESCO, IAEG. Engineering geological maps: a guide to their preparation // Earth Sci Ser Paris. 1976. Vol. 15. P. 1–79.
- ISSC – International Subcommission on Stratigraphic Classification of IUGS International Commission on Stratigraphy. International Stratigraphic guide. New York: John Wiley & Sons Inc., 1976. 220 p. ISBN-10:0471367435.
- Gonzalez de Vallejo L.I., Ferrer M. Geological Engineering. CRC Press/Balkema Leiden, 2011. 700 p. ISBN-10:0415413524.
- Fookes P.G. Geology for engineers: the geological model, prediction and performance // Q. J. Eng. Geol. Hydrogeol. 1997. Vol. 30. P. 293–424. https://doi.org/10.1144/GSL.QJEG.1997.030.P4.02.
- Terzaghi K. Rock defects and loads on tunnel supports // Proctor R.V., White T.L. (eds.). Rock tunneling with steel supports. 1946. Vol. 1. Youngstown, OH: Commercial Shearing and Stamping Company. P. 17–99.
- Parry S., Baynes F.J., Culshaw M.G., Eggers M., Keaton J.F., Lentfer K., Novotny J., Paul D. Engineering geological models: an introduction: IAEG commission 25 // Bull. Eng. Geol .Environ. 2014 . Vol. 73. P. 689–706. https://doi.org/10.1007/s10064-014-0576-x.
- CEN. EN 1997-1:2004: Eurocode 7: Geotechnical Design – Part 1: General Rules. Brussels European Committee for Standardization, 2004.
- Ministero delle Infrastrutture e dei Trasporti. Approvazione delle nuove norme tecniche per le costruzioni. D.M. 14 gennaio 2008 // Gazzetta Ufficiale. 2008. № 29. February 4.
- Kolat C., Ulusay R., LutfiSuzen M. Development of geotechnical microzonation model for Yenisehir (Bursa, Turkey) located at a seismically active region // Eng. Geol. 2012. Vol. 127. P. 36–53. https://doi.org/10.1016/j.enggeo.2011.12.014.
- Donghee K., Kyu-Sun K., Seongkwon K., Youngmin C., Woojin L. Assessment of geotechnical variability of Songdo silty clay // Eng. Geol. 2012. Vol. 133–134. P. 1–8. https://doi.org/10.1016/j.enggeo.2012.02.009.
- Alan M.L., Norman L.J. Building solid models from boreholes and user-defined cross-sections // Comput. Geosci. 2003. Vol. 29. P. 547–555. https://doi.org/10.1016/S0098-3004(03) 00051-7.
- Zhang S.S., Liu Z.H. 3D visualization of geological structure based on multi-layer DEM surface modeling // J. Geomat. 2003. Vol. 28. № 3 . P. 14–15.
- Douglas P., Mary C., Bruce T., Hugo O., Donald A.M. Alpine-scale 3D geospatial modeling: applying new techniques to old problems // Geosph. 2007. Vol. 3. P. 527–549. https://doi.org/10.1130/GES00 093.1.
- Lelliott M., Bridge D., Kessler H., Price S., Seymour K. The application of 3D geological modeling to aquifer recharge assessments in an urban environment // Q. J. Eng. Geol. Hydrogeol. 2006. Vol. 39. P. 293–302. https://doi.org/10.1144/1470-9236/05-027.
- Lelliott M., Cave M., Wealthall G. A structured approach to the measurement of uncertainty in 3D geological models // Quat. J. Eng. Geol. Hydrogeol. 2009. Vol. 42. P. 95–106. https://doi.org/10.1144/1470-9236/07-081.
- Robins N., Davies J., Dumpleton S. Groundwater flow in the south Wales coalfield: historical data informing 3D modeling // Q. J. Eng. Geol. Hydrogeol. 2008. Vol. 41. P. 477–486. https://doi.org/10.1144/1470-9236/07-055.
- Royse K.R., Rutter H.K., Entwisle D.C. Property attribution of 3D geological models in the Thames Gateway, London: new ways of visualising geoscientific information // Bull. Eng. Geol. Environ. 2009. Vol. 68. P. 1–16. https://doi.org/10.1007/s10064-008-0171-0.
- Thierry P., Prunier-Leparmentier A., Lembezat C., Vanoudheusden E., Vernous J. 3D geological modeling at urban scale and mapping of ground movement susceptibility from gypsum dissolution: the Paris example (France) // Eng. Geol. 2009. Vol. 105. P. 51–64. https://doi.org/10.1016/j.enggeo.2008.12.010.
- Kostic B., Suess M., Aigner T. Three-dimensional sedimentary architecture of Quaternary sand and gravel resources: a case study of economic sedimentology (SW Germany) // Int. J. Earth Sci. (Geol. Rundsch.). 2007. Vol. 96. P. 743–767. https://doi.org/10.1007/s00531-006-0120-8.
- Krassakis P., Pyrgaki K., Gemeni V., Roumpos C., Louloudis G., Koukouzas N. GIS-based subsurface analysis and 3D geological modeling as a tool for combined conventional mining and in-situ coal conversion: the case of Kardia Lignite Mine // Western Greece Mining. 2022. Vol. 2. P. 297–314. https://doi.org/10.3390/mining2020 016.
- Dong M. 3D geological modeling and its applications to zoning mapping of construction suitable sites in Shunyi developing district, Beijing: master’s thesis. Beijing: Chinese University of Geosciences, 2008.
- Apel M. From 3D geo-modeling systems towards 3D geoscience information systems: data model, query functionality and data management // Comput. Geosci. 2006. Vol. 32. P. 222–229. https://doi.org/10.1016/j.cageo.2005.06.016.
- Choi Y., Yoon S.Y., Park H.D. Tunneling analyst: a 3D GIS extension for rock mass classification and fault zone analysis in tunneling // Comput. Geosci. 2009. Vol. 35. № 6. P. 1322–1333. https://doi.org/10.1016/j.cageo.2008.05.002.
- Rose G., Kirk P., Gibbons C., Lander A. Three dimensional geological models in ground engineering: when to use, how to build and review, benefits and potential pitfalls // Australian Geomechanics. 2018. Vol. 53. № 3. P. 79–88.
- Whiteman B.D. 3D ground modelling: geotechnical investigation for dolphin replacement and jetty strengthening at Cape Lambert A (CLA) // Good grounds for the future: NZGS Symposium. Dunedin, 2021.
- Kessler H., Mathers S., Sobisch H.G. The capture and dissemination of integrated 3D geospatial knowledge at the British Geological Survey using GSI3D software and methodology. Comput Geosci. 200935. P. 1311–1321. https://doi.org/10.1016/j.cageo.2008.04.005.
- Marache A., Breysse D., Piette C., Thierry P. Geotechnical modeling at the city scale using statistical and geostatistical tools: the Pessac case (France) // Eng. Geol. 2009 . Vol. 107. № 34 . P. 67–76. https://doi.org/10.1016/j.enggeo.2009.04.003.
- Royse K.R. Combining numerical and cognitive 3D modelling approaches in order to determine the structure of the chalk in the London Basin // Comput. Geosci. 2010. Vol. 36. P. 500–511. https://doi.org/10.1016/j.cageo.2009.10.001.
- De Beer J., Price S.J., Ford J.R. 3D modelling of geological and anthropogenic deposits at the World Heritage Site of Bryggen in Bergen, Norway // Quat. Int. 2012. Vol. 251. P. 107–116. https://doi.org/10.1016/j.quaint.2011.06.015.
- De Beer J., Matthiesen H., Christensson A. Quantification and visualization of in situ degradation at the World Heritage Site Bryggen in Bergen, Norway // Conserv. Manag. Archael. Sites. 2012 . Vol. 1. P. 215–227. https://doi.org/10.1179/1350503312Z.00000 000018.
- Culshaw M.G. From concept towards reality: developing the attributed 3D geological model of the shallow subsurface // J. Eng. Geol. Hydrogeol. 2005. Vol. 38. P. 231–284. https://doi.org/10.1144/1470-9236/04-072.
- Baynes F.J., Parry S., Novotny J.N. Engineering geological models, projects and geotechnical risk // Q. J. Eng. Geol. Hydrogeol. 2020. Vol. 54. https://doi.org/10.1144/qjegh2020-080.
- Bowden R.A. Building confidence in geological models // Geological Society, London, Special Publications. 2004. Vol. 239. P. 157–173. https://doi.org/10.1144/GSL.SP.2004.239.01.11.
- Lee E.M. Landslide risk assessment: the challenge of communicating uncertainty to decision makers // Q. J. Eng. Geol. Hydrogeol. 2016. Vol. 49. P. 21–35. https://doi.org/10.1144/qjegh2015- 066.
- Wang L., Zheng Z., Zhu H. Construction and application of 3D model of engineering geology // International Conference on Applications and Techniques in Cyber Intelligence (ATCI 2021). 2021. Vol. 2. P. 512–518. https://doi.org/10.1007/978-3-030-79197-1_75.
- Ippolito F., Ortolani F., Russo M. Struttura marginale tirrenica dell’Appennino campano: reinterpretaizone di dati di antiche ricerche di idrocarburi // Mem. Soc. Geol. It. 1973. Vol. 12. P. 227–249.
- Ortolani F., Aprile F. Principali caratteristiche stratigrafiche e strutturali dei depositi superficiali della Piana Campana // Boll. Soc. Geol. It. 1985. Vol. 104. P. 195–206.
- Brancaccio L., Cinque A., Romano P., Rosskopf C., Russo F., Santangelo N. L’evoluzione delle pianure costiere della Campania: geomorfologia e neotettonica // Mem. Soc. Geol. It. 1995. Vol. 53. P. 313–336.
- Romano P., Santo A., Voltaggio M. L’evoluzione geomorfologica della pianura del Fiume Volturno (Campania) durante il tardo Quaternario (Pleistocene medio-superiore-Olocene) // Il Quaternario. 1994. Vol. 7. P. 41–56.
- Aprile F., Sbrana A., Toccacel R.M. Il ruolo dei depositi piroclastici nell’analisi cronostratigrafica dei terreni quaternari del sottosuolo della Piana Campana (Italia meridionale) // Il Quaternario. 2004. Vol. 17. P. 547–554.
- Milia A., Torrente M.M. Tectonics and stratigraphic architecture of a peri-Tyrrhenian half-graben (Bay of Naples, Italy) // Tectonophys. 1999. Vol. 315. P. 301–318. https://doi.org/10.1016/S0040-1951(99)00280-2.
- Cinque A., Alinaghi H.H., Laureti L., Russo F. Osservazioni preliminari sull’evoluzione geomorfologica della piana del Sarno (Campania, Appennino Meridionale) // Geogr. Fis. Dinam. Quat. 1987. Vol. 10. P. 161–174.
- D’Erasmo. Studio geologico dei pozzi profondi della Campania // Boll. Soc. Nat. 1931. Vol. 4. P. 15–143.
- Aprile F., Ortolani F. Nuovi dati sulla struttura profonda della Piana Campana a Sud Est del Fiume Volturno// Boll. Soc. Geol. It. 1978. Vol. 97. P. 591–608.
- Brancaccio L., Cinque A., Romano P., Rosskopf C., Russo F., Santangelo N., Santo A. Geomorphology and neotectonics evolution of a sector of the Tyrrhenian flank of the southern Apennines (Region of Naples, Italy) // Z. Geomorph. N. F. 1991. Vol. 82. P. 47–58.
- Torrente M.M., Milia A., Bellucci F., Rolandi G. Extensional tectonics in the Campania Volcanic Zone (eastern Tyrrhenian Sea, Italy): new insights into the relationship between faulting and ignimbrite eruptions // Ital. J. Geosci. (Boll. Soc. Geol. It.). 2010. Vol. 129. P. 297–315. https://doi.org/10.3301/IJG.2010.07.
- De Vita P., Allocca V., Celico F., Fabbrocino S., Mattia C., Monacelli G., Musilli I., Piscopo V., Scalise A.R., Summa G., et al. Hydrogeology of continental southern Italy // J. Maps. 2018. Vol. 14. P. 230–241. https://doi.org/10.1080/17445 647.2018.1454352.
- Pescatore T., Ortolani F. Schema tettonico dell’Appennino campano-lucano // Boll. Soc. Geol. It. 1973. Vol. 92. P. 453–472.
- Pescatore T., Sgrosso I. I rapporti tra la piattaforma campano-lucana e la piattaforma abruzzese-campana nel Casertano // Ital. J. Geosci. 1973. Vol. 92. № 4. P. 925–938.
- Di Vito M.A., Isaia R., Orsi G., Southon J., D’Antonio M., De Vita S., Pappalardo L., Piochi M. Volcanism and deformation since 12.000 years at the Campi Flegrei caldera (Italy) // J. Volcanol. Geotherm. Res. 1999. Vol. 91. P. 221–246. https://doi.org/10.1016/S0377-0273(99)00037-2.
- Santacroce R., Cioni R., Marinelli P., Sbrana A., Sulpizio R., Zanchetta G., Donahue D.J., Joron J.J. Age and whole rock-glass compositions of proximal pyroclastic from the major explosive eruptions of Somma-Vesuvius: a review as a tool for distal tephrostratigraphy // J. Volcanol. Geotherm. Res. 2008. Vol. 177. P. 1–18. https://doi.org/10.1016/j.jvolgeores.2008.06.009.
- Di Vito M.A., De Vita S. Il Somma Vesuvio: storia eruttiva e impatto delle sue eruzioni sul territorio // Miscellania INGV. Roma, 2013. Vol. 18. P. 14–21.
- Putignano M.L., Ruberti D., Tescione M., Vigliotti M. Evoluzione tardo quaternaria del margine casertano della Piana Campana (Italia meridionale) // Boll. Soc. Geol. Ital. 2007. Vol. 126. № 1. P. 11–24.
- Santangelo N., Ciampo G., Di Donato V., Esposiro P., Petrosino P., Romano P., Russo Ermolli E., Santo A., Toscano F., Villa I. Late Quaternary buried lagoons in the northern Campania plain (southern Italy): evolution of a coastal system under the influence of volcano-tectonics and eustatism // Ital. J. Geosci. (boll. Soc. Geol. It.). 2010. Vol. 129. № 1. P. 156–175. https://doi.org/10.3301/IJG.2009.12.
- De Vivo B., Rolandi G., Gans P.B., Calvert A., Bohrson W.A., Spera F.J., Belkin H.E. New constraints on the pyroclastic eruptive history of the Campanian volcanic Plain (Italy) // Mineral. Petrol. 2001. Vol. 73. P. 47–65.
- Deino A.L., Orsi G., De Vita S., Piochi M. The age of the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei caldera – Italy) assessed by 40Ar/39Ar dating method // J. Volcanol. Geotherm. Res. 2004. Vol. 133. P. 157–170. https://doi.org/10.1016/S0377-0273(03)00396-2.
- Carrara E., Iacobucci F., Pinna E., Rapolla A. Gravity and magnetic survey of the campanian volcanic area, Southern Italy // Boll. Geof. Teor. Appl. 1973. Vol. 57. P. 39–51.
- AGI – Associazione Geotecnica Italiana/ Nomenclatura geotecnica e classificazione delle terre // Geotecnica. Roma: Associazione Geotecnica Italiana, 1963. P. 275–286.
- De Beer E. Bearing capacity and settlement of shallow foundations on sands // Proc. Symp. on Bearing capacity and settlement of foundations, Duke University, Durham, 1965. P. 15–33.
- Canadian Geotechnical Society. Canadian Foundation Engineering Manual, 3rd edn. Richmond: Canadian Geotechnical Society, 1992.
- Schmertmann J.H. Static cone to compute static settlement over sand // J. Soil Mech. Found. Div. 1970. Vol. 96. № 3. https://doi.org/10.1061/JSFEAQ.0001418.
- Schmertmann J.H. Use the SPT to measure dynamic soil properties? – Yes, but…! // Dynamic Geotech. Testing Am. Soc. for Testing and Materials SPT. 1978. Vol. 654. P. 341–355. https://doi.org/10.1520/STP35685S.
- Fellenius B.H. Results from long-term measurement in piles of drag load and downdrag // Canadian Geotechnical Journal. 2006. Vol. 43. № 4. P. 409–430.
- Sanglerat G. The penetrometer and soil exploration: interpretation of penetration diagrams theory and practice // Developments in geotech nical engineering, 2nd edn. Amsterdam: Elsevier, 1972.
- Urmi Z.A., Ansary M.A. Interpretation of compressibility characteristics for coastal soil of Bangladesh // Proceedings on International Conference on Disaster Risk Management, Dhaka, Bangladesh, 2019.
- Simpson B., Pappin J.W., Croft D.D. Approach to limit state calculations in geotechnics // Ground Engng. 1981. Vol. 14. P. 21–28.
- Danish Geotecnhical Institute. Danish Code of Practice for Foundation Engineering // DGI Bulletin. 1978. Vol. 32. P. 52. ISBN: 87-7451-032-0.
Article in RSCI: https://elibrary.ru/item.asp?id=82945901

