Top.Mail.Ru
Переводные статьи

Трехмерное инженерно-геологическое моделирование и геотехническая характеристика в рамках правил геотехнического проектирования на примере площадки строительства логистического комплекса в долине Нола (Южная Италия)

Авторы
ПЕТРОНЕ П.Факультет наук о Земле, окружающей среде и ресурсах Неаполитанского университета имени Фридриха II, г. Неаполь, Италия
АЛЛОККА В.Факультет наук о Земле, окружающей среде и ресурсах Неаполитанского университета имени Фридриха II, г. Неаполь, Италия
ФУСКО Ф.Факультет гражданского строительства и инженерной защиты окружающей среды Миланского политехнического университета, г. Милан, Италия
ИНКОНТРИ П.Факультет наук о Земле, окружающей среде и ресурсах Неаполитанского университета имени Фридриха II, г. Неаполь, Италия
ДЕ ВИТА П.Факультет наук о Земле, окружающей среде и ресурсах Неаполитанского университета имени Фридриха II, г. Неаполь, Италия

Аннотация: Предлагаем вниманию читателей адаптированный перевод статьи итальянских специалистов «Трехмерное инженерно-геологическое моделирование и геотехническая характеристика в рамках правил геотехнического проектирования на примере площадки строительства логистического комплекса в долине Нола (Южная Италия)» ( Petrone et al., 2023). Она была опубликована в 2023 году в рецензируемом научном журнале Bulletin of Engineering Geology and the Environment («Журнал по инженерной геологии и окружающей среде»), который выпускается издательством Springer Science+Business Media от имени Международной ассоциации инженерной геологии и окружающей среды. Указанная работа находится в открытом доступе по лицензии CC BY 4.0, которая позволяет распространять, переводить, адаптировать и дополнять ее при условии указания типов изменений и ссылок на первоисточник и лицензию. В нашем случае полная ссылка на источник для перевода (Petrone et al., 2023) и лицензию открытого доступа приведена в конце.

При проектировании и строительстве зданий и другой инфраструктуры важным этапом для оптимизации затрат на строительство и минимизации рисков, связанных с непредвиденными грунтовыми условиями, является разработка надежной/достоверной трехмерной инженерно-геологической модели. Моделирование грунтовых условий (ground conditions) представляет собой сложную задачу, особенно в случаях  геологических единиц (units) со сложной геометрией и пространственно изменчивыми геотехническими свойствами. В этом отношении для определения инженерно-геологических единиц обычно применяются комбинированные геологические и геотехнические критерии.

Эти концепции учтены в действующих правилах геотехнического проектирования, прописанных в Еврокоде 7, и в разработанных на их основе национальных нормативных документах, например в итальянских «Строительных нормах и правилах» (Norme Tecniche per le Costruzioni (NTC)). Однако, несмотря на такую развитую нормативную базу, нет обстоятельных методических рекомендаций по 3D инженерно-геологическому моделированию и геотехнической характеристике площадок будущего строительства.

В представленной работе рассматривается случай исследования весьма гетерогенной и гетеропической пирокластическо-аллювиальной стратиграфической обстановки равнины Нола (административная область Кампания, Южная Италия), характерной для площадки планируемого строительства логистического комплекса коммуны Нола. Использованные подходы основывались на анализе большого массива стратиграфических, лабораторных и полевых геотехнических данных, собранных для проектирования указанного объекта, с помощью инженерно-геологического моделирования в специализированном программном комплексе с расширенными возможностями для пространственного моделирования геологической и геотехнической информации, а также ее визуализации.

Полученные результаты показали, что представленный процесс работы, в том числе анализ статистической изменчивости геотехнических свойств и определение репрезентативных значений геотехнических параметров, потенциально может рассматриваться как методологический подход, соответствующий действующим (в Италии. – Ред.) правилам геотехнического проектирования и фундаментальным принципам инженерно-геологического моделирования и картирования.

Ключевые слова: трехмерное моделирование; сложные грунтовые условия; геотехническое проектирование; строительство; гражданские инженерные сооружения; инженерно-геологическая единица; инженерно-геологический тип; трехмерная инженерно-геологическая модель

DOI: https://doi.org/10.58339/2949-0677-2025-7-2-100-118

УДК: 004.94; 624.131

 

Ссылка для цитирования: Петроне П., Аллокка В., Фуско Ф., Инконтри П., Де Вита П. Трехмерное инженерно-геологическое моделирование и геотехническая характеристика в рамках правил геотехнического проектирования на примере площадки строительства логистического комплекса в долине Нола (Южная Италия) // Геоинфо. 2025. Т. 7. № 2. С. 100–118. DOI:10.58339/2949-0677-2024-7-2-100-118.

 

Финансирование: Финансирование открытого доступа данной статьи было предоставлено Неаполитанским университетом имени Фридриха II (UNINA – Universitа degli Studi di Napoli Federic II) в рамках соглашения издателя и подкомиссии Ассоциации ректоров итальянских университетов, занимающейся такими соглашениями (CRUI-CARE). Проведение исследования финансировалось в рамках проекта по программе PRIN (Progetti di Rilevante Interesse Nazionale – «Проекты, представляющие значительный национальный интерес») 2017 года под названием «НАСУЩНОЕ – городская геология и геологические опасности: инженерная геология для более безопасных, устойчивых и умных городов» («URGENT – URban Geology and geohazards: Engineering geology for safer, resilieNt and smart ciTies»).

 

БИБЛИОГРАФИЯ:

  1. UNESCO, IAEG. Engineering geological maps: a guide to their preparation // Earth Sci Ser Paris. 1976. Vol. 15. P. 1–79.
  2. ISSC – International Subcommission on Stratigraphic Classification of IUGS International Commission on Stratigraphy. International Stratigraphic guide. New York: John Wiley & Sons Inc., 1976. 220 p. ISBN-10:0471367435.
  3. Gonzalez de Vallejo L.I., Ferrer M. Geological Engineering. CRC Press/Balkema Leiden, 2011. 700 p. ISBN-10:0415413524.
  4. Fookes P.G. Geology for engineers: the geological model, prediction and performance // Q. J. Eng. Geol. Hydrogeol. 1997. Vol. 30. P. 293–424. https://doi.org/10.1144/GSL.QJEG.1997.030.P4.02.
  5. Terzaghi K. Rock defects and loads on tunnel supports // Proctor R.V., White T.L. (eds.). Rock tunneling with steel supports. 1946. Vol. 1. Youngstown, OH: Commercial Shearing and Stamping Company. P. 17–99.
  6. Parry S., Baynes F.J., Culshaw M.G., Eggers M., Keaton J.F., Lentfer K., Novotny J., Paul D. Engineering geological models: an introduction: IAEG commission 25 // Bull. Eng. Geol .Environ. 2014 . Vol. 73. P. 689–706. https://doi.org/10.1007/s10064-014-0576-x.
  7. CEN. EN 1997-1:2004: Eurocode 7: Geotechnical Design – Part 1: General Rules. Brussels European Committee for Standardization, 2004.
  8. Ministero delle Infrastrutture e dei Trasporti. Approvazione delle nuove norme tecniche per le costruzioni. D.M. 14 gennaio 2008 // Gazzetta Ufficiale. 2008. № 29. February 4.
  9. Kolat C., Ulusay R., LutfiSuzen M. Development of geotechnical microzonation model for Yenisehir (Bursa, Turkey) located at a seismically active region // Eng. Geol. 2012. Vol. 127. P. 36–53. https://doi.org/10.1016/j.enggeo.2011.12.014.
  10. Donghee K., Kyu-Sun K., Seongkwon K., Youngmin C., Woojin L. Assessment of geotechnical variability of Songdo silty clay // Eng. Geol. 2012. Vol. 133–134. P. 1–8. https://doi.org/10.1016/j.enggeo.2012.02.009.
  11. Alan M.L., Norman L.J. Building solid models from boreholes and user-defined cross-sections // Comput. Geosci. 2003. Vol. 29. P. 547–555. https://doi.org/10.1016/S0098-3004(03) 00051-7.
  12. Zhang S.S., Liu Z.H. 3D visualization of geological structure based on multi-layer DEM surface modeling // J. Geomat. 2003. Vol. 28. № 3 . P. 14–15.
  13. Douglas P., Mary C., Bruce T., Hugo O., Donald A.M. Alpine-scale 3D geospatial modeling: applying new techniques to old problems // Geosph. 2007. Vol. 3. P. 527–549. https://doi.org/10.1130/GES00 093.1.
  14. Lelliott M., Bridge D., Kessler H., Price S., Seymour K. The application of 3D geological modeling to aquifer recharge assessments in an urban environment // Q. J. Eng. Geol. Hydrogeol. 2006. Vol. 39. P. 293–302. https://doi.org/10.1144/1470-9236/05-027.
  15. Lelliott M., Cave M., Wealthall G. A structured approach to the measurement of uncertainty in 3D geological models // Quat. J. Eng. Geol. Hydrogeol. 2009. Vol. 42. P. 95–106. https://doi.org/10.1144/1470-9236/07-081.
  16. Robins N., Davies J., Dumpleton S. Groundwater flow in the south Wales coalfield: historical data informing 3D modeling // Q. J. Eng. Geol. Hydrogeol. 2008. Vol. 41. P. 477–486. https://doi.org/10.1144/1470-9236/07-055.
  17. Royse K.R., Rutter H.K., Entwisle D.C. Property attribution of 3D geological models in the Thames Gateway, London: new ways of visualising geoscientific information // Bull. Eng. Geol. Environ. 2009. Vol. 68. P. 1–16. https://doi.org/10.1007/s10064-008-0171-0.
  18. Thierry P., Prunier-Leparmentier A., Lembezat C., Vanoudheusden E., Vernous J. 3D geological modeling at urban scale and mapping of ground movement susceptibility from gypsum dissolution: the Paris example (France) // Eng. Geol. 2009. Vol. 105. P. 51–64. https://doi.org/10.1016/j.enggeo.2008.12.010.
  19. Kostic B., Suess M., Aigner T. Three-dimensional sedimentary architecture of Quaternary sand and gravel resources: a case study of economic sedimentology (SW Germany) // Int. J. Earth Sci. (Geol. Rundsch.). 2007. Vol. 96. P. 743–767. https://doi.org/10.1007/s00531-006-0120-8.
  20. Krassakis P., Pyrgaki K., Gemeni V., Roumpos C., Louloudis G., Koukouzas N. GIS-based subsurface analysis and 3D geological modeling as a tool for combined conventional mining and in-situ coal conversion: the case of Kardia Lignite Mine // Western Greece Mining. 2022. Vol. 2. P. 297–314. https://doi.org/10.3390/mining2020 016.
  21. Dong M. 3D geological modeling and its applications to zoning mapping of construction suitable sites in Shunyi developing district, Beijing: master’s thesis. Beijing: Chinese University of Geosciences, 2008.
  22. Apel M. From 3D geo-modeling systems towards 3D geoscience information systems: data model, query functionality and data management // Comput. Geosci. 2006. Vol. 32. P. 222–229. https://doi.org/10.1016/j.cageo.2005.06.016.
  23. Choi Y., Yoon S.Y., Park H.D. Tunneling analyst: a 3D GIS extension for rock mass classification and fault zone analysis in tunneling // Comput. Geosci. 2009. Vol. 35. № 6. P. 1322–1333. https://doi.org/10.1016/j.cageo.2008.05.002.
  24. Rose G., Kirk P., Gibbons C., Lander A. Three dimensional geological models in ground engineering: when to use, how to build and review, benefits and potential pitfalls // Australian Geomechanics. 2018. Vol. 53. № 3. P. 79–88.
  25. Whiteman B.D. 3D ground modelling: geotechnical investigation for dolphin replacement and jetty strengthening at Cape Lambert A (CLA) // Good grounds for the future: NZGS Symposium. Dunedin, 2021.
  26. Kessler H., Mathers S., Sobisch H.G. The capture and dissemination of integrated 3D geospatial knowledge at the British Geological Survey using GSI3D software and methodology. Comput Geosci. 200935. P. 1311–1321. https://doi.org/10.1016/j.cageo.2008.04.005.
  27. Marache A., Breysse D., Piette C., Thierry P. Geotechnical modeling at the city scale using statistical and geostatistical tools: the Pessac case (France) // Eng. Geol. 2009 . Vol. 107. № 34 . P. 67–76. https://doi.org/10.1016/j.enggeo.2009.04.003.
  28. Royse K.R. Combining numerical and cognitive 3D modelling approaches in order to determine the structure of the chalk in the London Basin // Comput. Geosci. 2010. Vol. 36. P. 500–511. https://doi.org/10.1016/j.cageo.2009.10.001.
  29. De Beer J., Price S.J., Ford J.R. 3D modelling of geological and anthropogenic deposits at the World Heritage Site of Bryggen in Bergen, Norway // Quat. Int. 2012. Vol. 251. P. 107–116. https://doi.org/10.1016/j.quaint.2011.06.015.
  30. De Beer J., Matthiesen H., Christensson A. Quantification and visualization of in situ degradation at the World Heritage Site Bryggen in Bergen, Norway // Conserv. Manag. Archael. Sites. 2012 . Vol. 1. P. 215–227. https://doi.org/10.1179/1350503312Z.00000 000018.
  31. Culshaw M.G. From concept towards reality: developing the attributed 3D geological model of the shallow subsurface // J. Eng. Geol. Hydrogeol. 2005. Vol. 38. P. 231–284. https://doi.org/10.1144/1470-9236/04-072.
  32. Baynes F.J., Parry S., Novotny J.N. Engineering geological models, projects and geotechnical risk // Q. J. Eng. Geol. Hydrogeol. 2020. Vol. 54. https://doi.org/10.1144/qjegh2020-080.
  33. Bowden R.A. Building confidence in geological models // Geological Society, London, Special Publications. 2004. Vol. 239. P. 157–173. https://doi.org/10.1144/GSL.SP.2004.239.01.11.
  34. Lee E.M. Landslide risk assessment: the challenge of communicating uncertainty to decision makers // Q. J. Eng. Geol. Hydrogeol. 2016. Vol. 49. P. 21–35. https://doi.org/10.1144/qjegh2015- 066.
  35. Wang L., Zheng Z., Zhu H. Construction and application of 3D model of engineering geology // International Conference on Applications and Techniques in Cyber Intelligence (ATCI 2021). 2021. Vol. 2. P. 512–518. https://doi.org/10.1007/978-3-030-79197-1_75.
  36. Ippolito F., Ortolani F., Russo M. Struttura marginale tirrenica dell’Appennino campano: reinterpretaizone di dati di antiche ricerche di idrocarburi // Mem. Soc. Geol. It. 1973. Vol. 12. P. 227–249.
  37. Ortolani F., Aprile F. Principali caratteristiche stratigrafiche e strutturali dei depositi superficiali della Piana Campana // Boll. Soc. Geol. It. 1985. Vol. 104. P. 195–206.
  38. Brancaccio L., Cinque A., Romano P., Rosskopf C., Russo F., Santangelo N. L’evoluzione delle pianure costiere della Campania: geomorfologia e neotettonica // Mem. Soc. Geol. It. 1995. Vol. 53. P. 313–336.
  39. Romano P., Santo A., Voltaggio M. L’evoluzione geomorfologica della pianura del Fiume Volturno (Campania) durante il tardo Quaternario (Pleistocene medio-superiore-Olocene) // Il Quaternario. 1994. Vol. 7. P. 41–56.
  40. Aprile F., Sbrana A., Toccacel R.M. Il ruolo dei depositi piroclastici nell’analisi cronostratigrafica dei terreni quaternari del sottosuolo della Piana Campana (Italia meridionale) // Il Quaternario. 2004. Vol. 17. P. 547–554.
  41. Milia A., Torrente M.M. Tectonics and stratigraphic architecture of a peri-Tyrrhenian half-graben (Bay of Naples, Italy) // Tectonophys. 1999. Vol. 315. P. 301–318. https://doi.org/10.1016/S0040-1951(99)00280-2.
  42. Cinque A., Alinaghi H.H., Laureti L., Russo F. Osservazioni preliminari sull’evoluzione geomorfologica della piana del Sarno (Campania, Appennino Meridionale) // Geogr. Fis. Dinam. Quat. 1987. Vol. 10. P. 161–174.
  43. D’Erasmo. Studio geologico dei pozzi profondi della Campania // Boll. Soc. Nat. 1931. Vol. 4. P. 15–143.
  44. Aprile F., Ortolani F. Nuovi dati sulla struttura profonda della Piana Campana a Sud Est del Fiume Volturno// Boll. Soc. Geol. It. 1978. Vol. 97. P. 591–608.
  45. Brancaccio L., Cinque A., Romano P., Rosskopf C., Russo F., Santangelo N., Santo A. Geomorphology and neotectonics evolution of a sector of the Tyrrhenian flank of the southern Apennines (Region of Naples, Italy) // Z. Geomorph. N. F. 1991. Vol. 82. P. 47–58.
  46. Torrente M.M., Milia A., Bellucci F., Rolandi G. Extensional tectonics in the Campania Volcanic Zone (eastern Tyrrhenian Sea, Italy): new insights into the relationship between faulting and ignimbrite eruptions // Ital. J. Geosci. (Boll. Soc. Geol. It.). 2010. Vol. 129. P. 297–315. https://doi.org/10.3301/IJG.2010.07.
  47. De Vita P., Allocca V., Celico F., Fabbrocino S., Mattia C., Monacelli G., Musilli I., Piscopo V., Scalise A.R., Summa G., et al. Hydrogeology of continental southern Italy // J. Maps. 2018. Vol. 14. P. 230–241. https://doi.org/10.1080/17445 647.2018.1454352.
  48. Pescatore T., Ortolani F. Schema tettonico dell’Appennino campano-lucano // Boll. Soc. Geol. It. 1973. Vol. 92. P. 453–472.
  49. Pescatore T., Sgrosso I. I rapporti tra la piattaforma campano-lucana e la piattaforma abruzzese-campana nel Casertano // Ital. J. Geosci. 1973. Vol. 92. № 4. P. 925–938.
  50. Di Vito M.A., Isaia R., Orsi G., Southon J., D’Antonio M., De Vita S., Pappalardo L., Piochi M. Volcanism and deformation since 12.000 years at the Campi Flegrei caldera (Italy) // J. Volcanol. Geotherm. Res. 1999. Vol. 91. P. 221–246. https://doi.org/10.1016/S0377-0273(99)00037-2.
  51. Santacroce R., Cioni R., Marinelli P., Sbrana A., Sulpizio R., Zanchetta G., Donahue D.J., Joron J.J. Age and whole rock-glass compositions of proximal pyroclastic from the major explosive eruptions of Somma-Vesuvius: a review as a tool for distal tephrostratigraphy // J. Volcanol. Geotherm. Res. 2008. Vol. 177. P. 1–18. https://doi.org/10.1016/j.jvolgeores.2008.06.009.
  52. Di Vito M.A., De Vita S. Il Somma Vesuvio: storia eruttiva e impatto delle sue eruzioni sul territorio // Miscellania INGV. Roma, 2013. Vol. 18. P. 14–21.
  53. Putignano M.L., Ruberti D., Tescione M., Vigliotti M. Evoluzione tardo quaternaria del margine casertano della Piana Campana (Italia meridionale) // Boll. Soc. Geol. Ital. 2007. Vol. 126. № 1. P. 11–24.
  54. Santangelo N., Ciampo G., Di Donato V., Esposiro P., Petrosino P., Romano P., Russo Ermolli E., Santo A., Toscano F., Villa I. Late Quaternary buried lagoons in the northern Campania plain (southern Italy): evolution of a coastal system under the influence of volcano-tectonics and eustatism // Ital. J. Geosci. (boll. Soc. Geol. It.). 2010. Vol. 129. № 1. P. 156–175. https://doi.org/10.3301/IJG.2009.12.
  55. De Vivo B., Rolandi G., Gans P.B., Calvert A., Bohrson W.A., Spera F.J., Belkin H.E. New constraints on the pyroclastic eruptive history of the Campanian volcanic Plain (Italy) // Mineral. Petrol. 2001. Vol. 73. P. 47–65.
  56. Deino A.L., Orsi G., De Vita S., Piochi M. The age of the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei caldera – Italy) assessed by 40Ar/39Ar dating method // J. Volcanol. Geotherm. Res. 2004. Vol. 133. P. 157–170. https://doi.org/10.1016/S0377-0273(03)00396-2.
  57. Carrara E., Iacobucci F., Pinna E., Rapolla A. Gravity and magnetic survey of the campanian volcanic area, Southern Italy // Boll. Geof. Teor. Appl. 1973. Vol. 57. P. 39–51.
  58. AGI – Associazione Geotecnica Italiana/ Nomenclatura geotecnica e classificazione delle terre // Geotecnica. Roma: Associazione Geotecnica Italiana, 1963. P. 275–286.
  59. De Beer E. Bearing capacity and settlement of shallow foundations on sands // Proc. Symp. on Bearing capacity and settlement of foundations, Duke University, Durham, 1965. P. 15–33.
  60. Canadian Geotechnical Society. Canadian Foundation Engineering Manual, 3rd edn. Richmond: Canadian Geotechnical Society, 1992.
  61. Schmertmann J.H. Static cone to compute static settlement over sand // J. Soil Mech. Found. Div. 1970. Vol. 96. № 3. https://doi.org/10.1061/JSFEAQ.0001418.
  62. Schmertmann J.H. Use the SPT to measure dynamic soil properties? – Yes, but…! // Dynamic Geotech. Testing Am. Soc. for Testing and Materials SPT. 1978. Vol. 654. P. 341–355. https://doi.org/10.1520/STP35685S.
  63. Fellenius B.H. Results from long-term measurement in piles of drag load and downdrag // Canadian Geotechnical Journal. 2006. Vol. 43. № 4. P. 409–430.
  64. Sanglerat G. The penetrometer and soil exploration: interpretation of penetration diagrams theory and practice // Developments in geotech nical engineering, 2nd edn. Amsterdam: Elsevier, 1972.
  65. Urmi Z.A., Ansary M.A. Interpretation of compressibility characteristics for coastal soil of Bangladesh // Proceedings on International Conference on Disaster Risk Management, Dhaka, Bangladesh, 2019.
  66. Simpson B., Pappin J.W., Croft D.D. Approach to limit state calculations in geotechnics // Ground Engng. 1981. Vol. 14. P. 21–28.
  67. Danish Geotecnhical Institute. Danish Code of Practice for Foundation Engineering // DGI Bulletin. 1978. Vol. 32. P. 52. ISBN: 87-7451-032-0.

 

Статья в РИНЦ: https://elibrary.ru/item.asp?id=82945901